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There is much theoretical and experimental work concerning detonating 

combustion of gas mixtures. Owing to the high velocity of propagation of 

detonating waves (order of several km/set), the experimental studies 

covered only the unsteady motion of a gas due to the propagation of deto- 

nation in an undisturbed medium. Theoretical solutions also have been con- 

cerned mainly with the propagation of planar, cylindrical and spherical 

detonation waves in an undisturbed gas of a constant or variable density 
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Fig. 1. 

Recently, in connection with the problem of burning fuel in supersonic 

flow [5-6 1, there has been a renewed interest in the study of detonative 

waves in steady-state flow, and reports on flow around a body of a gas 

capable of detonation are beginning to appear. 

In reference [7 ] is derived an equation which. for a given velocity 

and ratio of stagnation temperatures behind and ahead of the detonative 

wave, relates the velocity components behing the wave (equation of deto- 

native polar). Segment PS of a detonative polar (Fig. 1) corresponds to 

strong (or over-compressed) detonative waves where the normal component 

of velocity behind the wave is subsonic. Segment JQ corresponds to a weak 

(or under-compressed) detonative wave where the normal component of velo- 

city behind the wave is supersonic. Point J, dividing these two types of 

detonation (point J is obtained by drawing a tangent to the Polar from 

point V, free stream velocity) corresponds to the Chapman-Jouguet detona- 

tion where the normal component of velocity behind the wave is equal to 
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the local speed of sound. Note that under-compressed waves of detonation 

do not exist [ 1 ] under usual conditions. 

In reference [8 ] the problem of the flow of detonating gas around a 

wedge is solved. If angle 8. formed by the side of the wedge and the 

direction of flow, is larger than the angle between the direction of flow 
and the tangent OR (Fig. 1, 1, then flow with an attached detonative wave 

is impossible and a detached wave is formed ahead of the wedge. At smaller 

values of 8 a line formed by the side of the wedge has two points of 

intersection with the polar (points N and N’. Fig. 1). 

As in the case of a simple shock wave near point N’, velocity behind 

the detonative wave is supersonic (excluding a small region in the vici- 

nity of point B), while near point N it is subsonic. As the wedge angle 

8 decreases until points N’ and J coincide, i.e. 0 = 0 ., the Chapman- 

Jouguet detonation occurs, the velocity component of t e burnt gas normal h 

to the wave being equal to the speed of sound. Then the wave coincides 

with the straight-line characteristics of supersonic flow behind it. If 

the angle is still further reduced, the detonative wave remains as the 

Chapman-Jouguet detonation. However, from the straight-line characteristic 

which coincides with the detonative wave there originates the Prandtl- 

Meyer flow in which the flow turns from angle 8. in direction 8 < 8. 

along the side of the wedge. In the limiting caie when 6 = 0, flow in the 

rarefied wave again assumes its original direction. In this case the so- 

lution corresponds to the propagation of a detonative wave from a straight 

line source of ignition perpendicular to the flow. An example of such a 

flow is shown in Fig. 2. 

It is experimentally easier to study the flow of stationary detqnative 

waves around bodies of revolution than around airfoils. The simplest case 

of a flow around a body of revolution - a symmetric flow around a circular 

cone - is therefore examined here. 

This can be done by using the well-known theory of axisymmetric flow 

of a gas [9, 10 1. According to this theory, the equation relating velo- 

city component u in the direction of the axis of symmetry and v-normal 

to it, is 

vu” = 1 + V’Z- 
(u + vq2 

az 

where the primes designate differentiation with respect to a, and a is 

the speed of sound determined from 

'(+I 2 a*= 2ha, -q ($ ,- u2) 
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Detonative 

Fig. 2. 

(y is the ratio of specific heats, a the critical velocity ahead of a 

detonative wave, h the ratio of stagiation temperatures behind and ahead 

of the wave). The relationship between the planes uv and xy is given by 

?I 1 
-=-- 

2 V’ 

i.e. when the direction of the x and a axes is identical, the normal to 

the integral curve U(U) of equation (1) is parallel to the corresponding 

line in the plane xy. 

In the problem of the flow of a detonating gas around a cone, the 

integral curve of equation (1) must begin on a polar of detonation, the 

equation of which [ 8 1 is 

v2 = tv - u, 
vu (V - u) - (AV -24) a*2 
[2 / (y + I)] V” -vu + a*6 

(V is the velocity of the oncoming flow). According to the above relation- 

ship between the planes uv and xy, the -integral curve at the initial 

point must be directed along the straight line (Fig. 3) which connects 

this point with point V. The integral curve must end at the point satis- 

fying 

24 + vu’ =o 

Fig. 3. 

according to the boundary condition on the surface of the cone. The con- 

dition of a unique solution in the plane xy demands that, while moving 

along the integral curve, the normal to the curve must rotate monotonic- 

ally clockwise. 
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Equation (1) can be replaced by the geometric relation [9 1: 

R_-- N 
l-W/a’ 

R == _(1+v’2)=‘a 
v” .* 

N _-7 v (1 + v*2)‘/z 

Here R is the radius of curvature of the integral curve, N is the ab- 

solute value of a segment of the normal to the integral curve between the 

curve and axis U, U is the velocity component tangent to the direction of 

the integral curve at a given point, i.e. velocity component II,, is normal 

to the corresponding line (Fig. 4) in the plane xy. 

Since the portion of the detonative polar to the left of J corresponds 

to the over-compressed detonating wave, v,, < a, the integral curves de- 

scribing the flow behind the over-compressed detonating waves are initially 

convex toward the u axis. 

In accordance with the said fact about the normal curvature of the 

solution, these curves emerge from the initial point to the left and cor- 

respond to the conical compressed flow, analogous to the well-known cases 

of the flow through a shock wave around a cone. The ends of the integral 

curves, corresponding to the surface of the cone (the normal to the inte- 

gral curves at these points must pass through the origin of the coordi- 

nates in order to satisfy the required boundary condition u,, = 0). form 

segment PK in Fig. 3, analogous to the “apple” curve when h = 1. 

Fig. 4. 

At point J. which corresponds to the Chapman-Jouguet detonation, vn= a; 

therefore the radius of curvature of the integral curve at this point is 

infinite. 

Examining the mutual shape of the integral curve and the curves V, = a 
(which, in the case of a perfect gas with a constant specific heat, are 

epicycloids), it is easy to show that the integral curve has an inflection 

point at J. Therefore it is possible to move from J along the integral 
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curve not only to the left but also the the right while keeping rotation 
of the normal clockwise. To the latter case corresponds the beginning of 
rarefied flow behind the detonative wave, in which the direction of gas 
flow approaches the direction of the axis of symmetry. In this rarefied 
flow on each line emerging from the apex of the cone, the velocity com- 
ponent normal to the line is supersonic, and therefore each such line can 
be replaced by a conical shock wave. 

Let us examine a certain point N on the integral curve which describes 
a rarefied flow (Fig. 3) and draw through this Point a shock polar, the 
initial velocity of which is ON. Point NC in the plane uv corresponding 
to velocity behind the shock wave must be the intersection of the shock 
polar with the tangent to the integral curve at N. 

From the condition of continuity in the plane xy it follows that the 
direction of the discontinuity, determined as the direction of the normal 
to the secant NN’i must .coincide with the direction of the normal to the 
integral curve at N. Since vn < a at N’i the integral curve corresponding 
to the flow behind the shock wave is concave toward the u axis and must 
initiate at N’ in the direction of NN: This curve describes a compressive 
flow and extends (as do the curves emerging from the points on the segment 
PJ of the detonative polar) to N”, where v,, = 0. The intensity of the 
shock wave while approaching J reduces to zero, since at this point the 
shock polar is tangent to the integral curve. This is so because the shock 
polar and the epicycloid v, = a at this point have a common tangent to the 
integral curve. For the same reason, the intensity of the shock wave tends 
to zero when N approaches point L located on the u axis. The locus of the 
points N”.- corresponding to all positions of N on the segment JL of the 
integral curve, forms segment KS of the “apple” curve. 

Beyond point L. the flow can be extended by various means. From this 
point, which is a singular Point of the differential equation (1) (at the 
same angle as the integral curve JL), emerges a family of integral curves 
of various curvatures [9 I. From the condition that the solution in 
the, plane xy does not change sign,,.it follows that for the extension of the 
solution corresponding to the integral curve JL, those integral curves 
which at this point have curvature of an opposite sign than the curve JL, 

should be utilized. These integral curves describe a compressed flow con- 
tinually ad3acent to the rarefied flow JL. The ends of the integral curves 
which satisfy the condition vn = 0 form the remaining part of the “apple” 
curve. 

The possibility of the continuity of the rarefied flow described by 
the integral curve JL with various compressed flows can be justified by 
the fact that the boundary line of the rarefied flow corresponding to the 
point L is a characteristic. 
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Fig. 5. 

The preceding analysis indicates that the flow of detonating gas around 
a cone may have several aspects. For each cone angle smaller than a cer- 
tain limiting value of emmax, depending upon Mach number x and y, there 
can be two regimes of flow around the cone with an attached wave of deto- 
nation. Evidently, as in the case of an inert gas, in a free-stream flow 
of a detonating mixture around a cone, there will be a regime which cor- 
responds to a weaker detonative wave. If the cone angle is less than 6,nax 
but more than or equal to 8. (Fig. 3), then between the detonating wave 
and the surface of the cone’s continuous compressive flow (at 8 > 8. the 
wave of detonation will be over-compressed) takes place. This case IS 

quite analogous to the well-known flow of an inert gas around a cone with 
an attached shock wave. Since the velocity component normal to the rays 
is subsonic in this flow. the characteristics outgoing from the surface 
of the cone or fro@ the Mach line (if it exists) touch the wave of deto- 
nation. and when the cone angle is changed the angle of the conical wave 
of detonation also changes. The mechanism of the flow is shown in Fig. 5. 

When the cone angle is less than 8.. between the wave of detonation, 
which remains unchanged and correspon&s to the Chapman-Youguet detonation, 
and the compressed flow near the surface of the cone there originates a 
rarefied conical zone hounded by a shock wave. As the cone angle decreases 
the width of the rarefied zone grows, while the intensity of the shock 
wave first increases and then begins to decrease. When 8 = @e the width 
of the rarefied aone is maximum, and the shock wave which bounds it de- 
generates into a characteristic. The flow on this characteristic is along 
the symmetry axis of the flow and changes its direction continuously in 
the compressed wave until the required direction is reached. When the 
angle 8 is decreased still further, the intensity of the compression wave 
reduces and when the cone angle is zero it disappears entirely. Then, be- 
hind the conical zone of rarefaction, the flow advances along the axis of 
symmetry. This limiting case corresponds to the propagation of a detonative 
wave from a point source of ignition and also describes the flow of a de- 
tonating gas around an arbitrary finite body (including a cone when 
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e> e ,,,ax) at a great distance from the body. 

Detonative / 1 ,* 
wave pritical, 

Fig. 6. Pig. 7. 

Since in the conical wave of rarefaction v, > o disturbances coming 
from the surface of the cone along the characteristics cannot 
this region or influence the location of a detonative wave. 

penetrate 

Flows with a rarefaction wave with and without a shock are 
Figs. 6 and 7 respectively. 

shown in 

The fact that, as against the case of the rarefaction wave in a planar 
flow, inside the conical zone of rarefaction the formation of conical 
shock is possible, is connected with the peculiar behavior of the charac- 
teristics in the conical wave of rarefaction (compare Figs. 2 and 7). 

The motion of a cone in a detonating gas in the presence of a shock 
behind the wave presents an interesting example of a flow in which there 
are two gaps between particles moving in the same direction: the detona- 
tion wave propagating so that the particles of gas behind it have a normal 
velocity component equal to the speed of sound, and following it the shock 
wave which propagates supersonically with respect to the gas particles 
ahead of it. 

In conclusion let us note that when the velocity of the detonating 
mixture is much higher than velocity of the propagation of the detonative 
wave, the problem of the flow around a cone can be reduced approximately 
to the problem of the expansion caused by a cylindrical piston moving with 
constant speed in a detonating gas [ 11 1. 
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